Sains Malaysiana 53(2)(2024): 285-294

http://doi.org/10.17576/jsm-2024-5302-04

 

Probing the Potential of Water Chestnut Powder (Trapa bispinosa) in Improving the Shelf Life of Buttermilk

(Menyelidik Potensi Serbuk Berangan Air (Trapa bispinosa) dalam Meningkatkan Jangka Hayat Susu Mentega)

 

SADIA REHMAN RAO1, NABILA GULZAR1,*, MUHAMMAD NADEEM1, SAIMA RAFIQ2, FAKHARA KHANUM5, SHAMAS MURTAZA4 & MUHAMMAD AJMAL3

 

1Department of Dairy Technology, University of Veterinary and Animal Sciences, Lahore, 55300, Pakistan

2Department of Food Science and Technology, University of Poonch, Rawalakot, 12350, Pakistan

3Food Chemistry Lab, Department of Dairy Technology, University of Veterinary and Animal Sciences, Lahore, 55300, Pakistan

4Department of Food Science and Technology, Muhammad Nawaz Sharif University of Agriculture, Multan

5Department of Human Nutrition and Dietetics, University of Agriculture, DIKhan

 

Received: 11 January 2023/Accepted: 20 January 2024

 

Abstract

Buttermilk, a valuable by-product of butter production, faces challenges in commercialization due to its limited shelf life and susceptibility to fungal growth. This study aimed to explore the use of water chestnut powder (WCP) as a means to extend the shelf life of buttermilk. The investigation involved evaluating the physicochemical properties, antioxidant activity, antifungal properties, and stabilizing effects of WCP in buttermilk. Buttermilk samples were prepared with varying concentrations of WCP (0%, 0.5%, 1%, 1.5%, and 2%) and stored at 4 °C for one month. The analysis of physicochemical properties showed that the concentration of WCP had a significant impact on the protein percentage, ash content, pH, and acidity of the Water Chestnut Buttermilk (WCBM). Assessment of antioxidant activity using the phosphomolybdenum method showed that, on the 21st day of storage, WCBM3 and WCBM4 exhibited total antioxidant capacities of 0.57±0.12 and 0.60±0.32, respectively, compared to the control with a capacity of 0.48±0.07. The antifungal activity of water chestnut powder buttermilk was evaluated using a qualitative method, which demonstrated inhibition of fungal growth. In the control and WCBM1 and WCBM2 treatments, the observed inhibition ranged from 1-4 mm. However, as the concentration of water chestnut powder increased in WCBM3 and WCBM4, the level of inhibition also increased. Textural analysis further indicated the stabilizing effect of WCP on buttermilk. Overall, the incorporation of WCP in buttermilk yielded promising results in terms of enhancing its physicochemical properties, antioxidant activity, antifungal potential, and textural stability. This study highlights the potential of water chestnut as an ingredient to improve the shelf life and quality of buttermilk, creating opportunities for its commercial utilization in the dairy industry.

 

Keywords: Antifungal; buttermilk; physicochemical; sensory; water chestnut

 

Abstrak

Susu mentega, produk sampingan yang berharga daripada pengeluaran mentega, menghadapi cabaran dalam pengkomersialan kerana jangka hayatnya yang terhad dan mudah terdedah kepada pertumbuhan kulat. Penyelidkan ini bertujuan untuk mengkaji penggunaan serbuk berangan air (WCP) sebagai cara untuk memanjangkan jangka hayat susu mentega. Kajian melibatkan penilaian sifat fizikokimia, aktiviti antioksidan, sifat antikulat dan kesan penstabilan WCP dalam susu mentega. Sampel susu mentega disediakan dengan kepekatan WCP berbeza (0%, 0.5%, 1%, 1.5% dan 2%) dan disimpan pada suhu 4 °C selama satu bulan. Analisis sifat fizikokimia mendedahkan bahawa kepekatan WCP mempunyai kesan yang signifikan terhadap peratusan protein, kandungan abu, pH dan keasidan Air Susu Mentega Berangan (WCBM). Penilaian aktiviti antioksidan menggunakan kaedah phosphomolybdenum menunjukkan bahawa, pada hari penyimpanan ke-21, WCBM3 dan WCBM4 menunjukkan jumlah kapasiti antioksidan masing-masing 0.57±0.12 dan 0.60±0.32, berbanding kawalan dengan kapasiti 0.48±0.07. Aktiviti antikulat serbuk susu mentega berangan air dinilai menggunakan kaedah kualitatif, yang menunjukkan perencatan pertumbuhan kulat. Dalam kawalan dan rawatan WCBM1 dan WCBM2, perencatan yang diperhatikan adalah antara 1-4 mm. Walau bagaimanapun, apabila kepekatan serbuk berangan air meningkat dalam WCBM3 dan WCBM4, tahap perencatan juga meningkat. Analisis tekstur seterusnya menunjukkan kesan penstabilan WCP pada susu mentega. Secara keseluruhannya, penggabungan WCP dalam susu mentega membuahkan hasil yang memberangsangkan daripada segi peningkatan sifat fizikokimia, aktiviti antioksidan, potensi antikulat dan kestabilan tekstur. Kajian ini menyerlahkan potensi berangan air sebagai ramuan untuk meningkatkan jangka hayat dan kualiti susu mentega, mewujudkan peluang untuk penggunaan komersialnya dalam industri tenusu.

 

Kata kunci: Antikulat; berangan air; deria; fizikokimia; susu mentega

 

References

Alfasane, M.A., Khondker, M. & Rahman, M.M. 2011. Biochemical composition of the fruits of water chestnut (Trapa bispinosa Roxb.). Dhaka University Journal of Biological Sciences 20(1): 95-98. doi.org/10.3329/dujbs.v20i1.8879

Alsaleem, K.A. 2019. Using isoconversional methods to study the effect of antioxidants on the oxidation kinetics of milk fat. South Dakota State University. MSc. Thesis (Unpublished) https://openprairie.sdstate.edu/etd/3405

Association of Official Analytical Chemists (AOAC). 2019. International Official Methods of Analysis, 21st ed. AOAC International Maryland, USA.

Association of Official Analytical Chemists (AOAC). 2016. Official Methods of Analysis of AOAC International. Rockville MD: AOAC Int.

AOCS. 1989. Official Methods and Recommended Practices of the American Oil Chemists’ Society. 4th ed. American Oil Chemists’ Society, Champaign.

Banjara, N., Suhr, M.J. & Hallen-Adams, H.E. 2015. Diversity of yeast and mold species from a variety of cheese types. Current Microbiology 70: 792-800. doi.org/10.1007/s00284-015-0790-1

Barukčić, I., Jakopović, K.L. & Božanić, R. 2019. Whey and buttermilk - Neglected sources of valuable beverages. In Nat. Beverages, edited by Grumezescu, A.M. & Holban, A.M. Massachusetts: Academic Press. pp. 209-242.

Chen, X., Gao, C., Li, H., Huang, L., Sun, Q., Dong, Y., Tian, C., Gao, S., Dong, H., Guan, D. & Hu, X. 2010. Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Research 20(10): 1128-1137. doi: 10.1038/cr.2010.80

Consumi, M., Tamasi, G., Pepi, S., Leone, G., Bonechi, C., Magnani, A., Donati, A. & Rossi, C. 2022. Analytical composition of flours through thermogravimetric and rheological combined methods. Thermochimica Acta 711: 179204. doi.org/10.1016/j.tca.2022.179204

Dopazo, V., Luz, C., Calpe, J., Vila‐Donat, P., Rodriguez, L. & Meca, G. 2022. Antifungal properties of whey fermented by lactic acid bacteria in films for the preservation of cheese slices. International Journal of Dairy Technology 75(3): 619-629. doi.org/10.1111/1471-0307.12847

Dudkiewicz, A., Hayes, W. & Onarinde, B. 2022. Sensory quality and shelf-life of locally produced British butters compared to large-scale, industrially produced butters. British Food Journal 124(10): 3220-3235. doi.org/10.1108/BFJ-02-2021-0172

Echegaray, N., Munekata, P.E., Centeno, J.A., Domínguez, R., Pateiro, M., Carballo, J. & Lorenzo, J.M. 2020. Total phenol content and antioxidant activity of different celta pig carcass locations as affected by the finishing diet (chestnuts or commercial feed). Antioxidants 10(1): 5. doi: 10.3390/antiox10010005

Ewe, J.A. & Loo, S.Y. 2016. Effect of cream fermentation on microbiological, physicochemical and rheological properties of L. helveticus-butter. Food Chemistry 201: 29-36. doi: 10.1016/j.foodchem.2016.01.049

Gebreselassie, N., Abrahamsen, R.K., Beyene, F., Abay, F. & Narvhus, J.A. 2016. Chemical composition of naturally fermented buttermilk. International Journal Dairy Technology 69(2): 200-208. doi.org/10.1111/1471-0307.12236

 Ghanshyambhai, M.R., Balakrishnan, S. & Aparnathi, K.D. 2015. Standardization of the method for utilization of paneer whey in cultured buttermilk. Journal of Food Science and Technology 52: 2788-2796. doi: 10.1007/s13197-014-1301-2

Hati, S., Das, S. & Mandal, S. 2019. Technological advancement of functional fermented dairy beverages. In Engineering Tools in the Beverage Industry, edited by Grumezescu, A.M. & Holban, A.M. Woodhead Publishing. pp. 101-136. doi.org/10.1016/B978-0-12-815258-4.00004-4

Huis, in't Veld J.H. 1996. Microbial and biochemical spoilage of foods: An overview. International Journal of Food Microbiology 33(1): 1-8. https://doi.org/10.1016/0168-1605(96)01139-7

Hymery, N., Vasseur, V., Coton, M., Mounier, J., Jany, J.L., Barbier, G. & Coton, E. 2014. Filamentous fungi and mycotoxins in cheese: A review. Comprehensive Review Food Science Food Safety 13: 437-456. doi: 10.1111/1541-4337.12069

Latoch, A., Libera, J. & Stasiak, D.M. 2019. Physicochemical properties of pork loin marinated in Kefir, yoghurt or buttermilk and cooked sous vide. Acta Scientiarum Polonorum Technologia Alimentaria 18: 163-171. doi: 10.17306/J.AFS.0642

Ledenbach, L.H. & Marshall, R.T. 2009. Microbiological spoilage of dairy products. In Compendium of the Microbiological Spoilage of Foods and Beverages, edited by Sperber, W. & Doyle, M. Food Microbiology and Food Safety. New York: Springer. DOI:10.1007/978-1-4419-0826-1_2

Libudzisz, Z. & Stepaniak, L. 2011. Fermented milks | buttermilk. Encyclopedia of Dairy Sciences. 2nd ed. Massachusetts: Academic Press. pp. 489-495. DOI:10.1016/B978-0-12-374407-4.00183-7

Lutfi, Z., Nawab, A., Alam, F. & Hasnain, A. 2017. Morphological, physicochemical, and pasting properties of modified water chestnut (Trapabispinosa) starch. International Journal Food Properties 20(5): 1016-1028. doi.org/10.1080/10942912.2016.1193514

Mandal, S.M., Migliolo, L., Franco, O.L. & Ghosh, A.K. 2011. Identification of an antifungal peptide from Trapa natans fruits with inhibitory effects on Candida tropicalis biofilm formation. Peptides 32(8): 1741-1747. doi: 10.1016/j.peptides.2011.06.020

Martínez, S., Fuentes, C. & Carballo, J. 2022. Antioxidant activity, total phenolic content and total flavonoid content in sweet chestnut (Castanea sativa Mill.) cultivars grown in Northwest Spain under different environmental conditions. Foods 11(21): 3519. doi.org/10.3390/foods11213519

Meilgaard, M.C., Civille, G.V. & Carr, B.T. 2007. Sensory Evaluation Techniques. 4th ed. Boca Raton: CRC Press. doi.org/10.1201/b16452

Morin, P., Pouliot, Y. & Britten, M. 2008. Effect of buttermilk made from creams with different heat treatment histories on properties of rennet gels and model cheeses. Journal of Dairy Science 91(3): 871-882.doi.org/10.3168/jds.2007-0658

Nabasree, D. & Bratati, D. 2007. Antioxidant activity of Azadirachta indica A. Juss. (neem) leaf. Phytoche and Pharma III: 449-457.

Narvhus, J.A. & Abrahamsen, R.K. 2023. Traditional and modern Nordic fermented milk products: A review. International Dairy Journal 15: 105641. doi.org/10.1016/j.idairyj.2023.105641

Peng, L. & Jiang, Y. 2004. Effects of heat treatment on quality of fresh-cut Chinese water chestnut. International Journal Food Science and Technology 39(2): 143-148. DOI:10.1046/j.0950-5423.2003. 00767.x

Pitt, J.I. & Hocking, A.D. 2009. Fungi and Food Spoilage. New York: Springer. doi.org/10.1007/978-0-387-92207-2

Quasem, J.M., Mazahreh, A.S., Afaneh, I.A. & Omari, A. 2009. Solubility of solar dried jameed. Pakistan Journal Nutrition 8(2): 134-138. DOI: 10.3923/pjn.2009.134.138

Razvy, M.A., Kabir, A.H. & Hoque, M.A. 2011. Antifungal activity of fruit extracts of different water chestnut varieties. Notulae Scientia Biologicae 3(1): 61-64. doi.org/10.15835/nsb315596

Romani, A., Simone, G., Campo, M., Moncini, L. & Bernini, R. 2021. Sweet chestnut standardized fractions from sustainable circular process and green tea extract: In vitro inhibitory activity against phytopathogenic fungi for innovative applications in green agriculture. PLoS ONE 16(2. doi.org/10.1371/journal.pone.0247298

Shafi, S., Wani, I.A., Gani, A., Sharma, P., Wani, H.M., Masoodi, F.A., Khan, A.A. & Hamdani, A.M. 2016. Effect of water and ether extraction on functional and antioxidant properties of Indian horse chestnut (Aesculus indica Colebr) flour. Journal Food Measured and Characteristic 10(2): 387-395. DOI: 10.1007/s11694-016-9317-0

Steel, R.G.D., Torrie, J.H. & Dicky, D.A. 1997. Principles and Procedures of Statistics: A Biometrical Approach. 3rd ed. New York: McGraw Hill. pp. 352-358.

Tesch, S. & Schubert, H. 2002. Influence of increasing viscosity of the aqueous phase on the short-term stability of protein stabilized emulsions. Food Engineering 52(3): 305-312. DOI:10.1016/S0260-8774(01)00120-0

Xu, Z., Meenu, M., Chen, P. & Xu, B. 2020. Comparative study on phytochemical profiles and antioxidant capacities of chestnuts produced in different geographic area in China. Antioxidants 9(3): 190.

You, Y., Duan, X., Wei, X., Su, X., Zhao, M., Sun, J., Ruenroengklin, N. & Jiang, Y. 2007. Identification of major phenolic compounds of Chinese water chestnut and their antioxidant activity. Molecules 12(4): 842-852. doi10.3390/12040842

Yu, L., Nanguet, A.L. & Beta, T. 2013. Comparison of antioxidant properties of refined and whole wheat flour and bread. Antioxidants 2: 370-383. doi: 10.3390/antiox2040370

Zhan, G., Pan, L., Tu, K. & Jiao, S. 2016. Antitumor, antioxidant, and nitrite scavenging effects of Chinese water chestnut (Eleocharis dulcis) peel flavonoids. Journal of Food Science 81(10): H2578-H2586. doi: 10.1111/1750-3841.13434

Zhang, J., Jiang, H., Du, Y., Keyhani, N.O., Xia, Y. & Jin, K. 2019. Members of chitin synthase family in Metarhizium acridum differentially affect fungal growth, stress tolerances, cell wall integrity and virulence. PLoS Pathogens 15(8): e1007964. https://doi.org/10.1371/journal.ppat.1007964

 

*Corresponding author; email: nabila.gulzar@uvas.edu.pk

 

 

 

 

 

 

 

 

 

 

 

 

previous